THERMAL STUDIES OF N-PHENYLETHANE-1,2-DIAMINE COMPLEXES OF NICKEL(II) IN THE SOLID STATE

D. Das and N. Ray Chaudhuri

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Calcutta 700 032, India

(Received December 19, 1997; in revised form March 16, 1998)

Abstract

[NiL₃]X₂ (where L=N-phenylethane-1,2-diamine and X=T and ClO₄), [NiL₂X₂] (X is ClT, BrT, NCST, 0.5SO₄² or 0.5SeO₄²) and [NiL₂(H₂O)₂](NO₃)₂ have been synthesized from solution and their thermal study has been carried out in the solid phase. [NiL₂Cl₂] upon heating undergoes irreversible endothermic phase transition (142–152°C, ΔH =0.35 kJ molT) without showing any visual colour change. This phase transition is assumed to be due to conformation changes of the diamine chelate rings. NiLCl₂ and NiL_{2.5}I₂ have been prepared pyrolytically from [NiL₂Cl₂] and [NiL₃]I₂ respectively in the solid state. [NiL₂(H₂O)₂](NO₃)₂ upon heating undergoes deaquation-anation reaction without showing any visual colour change. [NiL₂X₂] (X is ClT, BrT, NCST), [NiL₂(H₂O)₂](NO₃)₂ and [NiL₂(NO₃)₂] possess *trans*-octahedral configuration, whereas, [NiL₂X₂] (X is 0.5SO₄² or 0.5SeO₄²T) are having *cis*-octahedral configuration. Amongst the complexes, only NiLCl₂ shows unusually high (5.1 BM at 27°C) magnetic susceptibility value.

Keywords: nickel(II) diamine complexes, N-phenylethane-1,2-diamine, phase transition

Introduction

Solid state thermal studies of nickel(II) complexes of ethane-1,2-diamine and its N-alkyl substituted derivatives are well documented in the literature [1–10]. It is observed that inductive and steric effect of the alkyl groups influence the thermal properties of the complexes i.e., the thermally induced phase transitions and/or decomposition of the complexes in the solid state. Similar study with analogous complexes of N-phenyl substituted derivatives of ethane-1,2-diamine is not documented and the mesomeric effect of the phenyl group vis-à-vis the positive inductive effect of the alkyl group and high steric effect of phenyl group make such study relevant. Here we report the syntheses and characterization of

N-phenylethane-1,2-diamine complexes of Ni(II)X₂ (X=Cl̄, Br̄, l̄, NCS̄, NŌ₃, ClŌ₄, 0.5SŌ₄ and 0.5SeŌ₄), their solid state thermal properties and comparison of their thermal stability with those of analogous complexes of N-alkyl substituted ethane-1,2-diamine in the solid state.

Experimental

High purity (98%) N-phenylethane-1,2-diamine(L) was purchased from Aldrich Chemical Company Inc. and used as received. All other chemicals used were of AR grade. The equipments used for elemental analyses, IR (4000–250 cm⁻¹) and electronic spectra (mull) (1500–300 nm), magnetic susceptibility measurements and for thermal analyses (TG-DTA and DSC) were reported earlier [11].

Commercial anhydrous nickel(II) iodide was practically insoluble in ethanol. Therefore, an ethanolic solution of nickel(II) iodide was prepared by mixing nickel(II) nitrate hexahydrate and sodium iodide in ethanol in 1:2 molar ratio and removal of sodium nitrate by filtration as described by Goodgame and Venanzi [12].

Preparation of the complexes

[NiL₃]X₂ (X is I and ClO₄) were prepared by slow addition of an ethanolic solution (5 cm³) of N-phenylethane-1,2-diamine (3 mmol) to the corresponding nickel(II) salts (1 mmol) dissolved in ethanol (10 cm³). The complexes which separated immediately were filtered, washed with ethanol and dried in a CaCl₂-desiccator.

 $[NiL_2X_2]$ (X is Cl⁻, Br⁻, NCS⁻, 0.5SO₄²⁻ and 0.5SeO₄²⁻) and $[NiL_2(H_2O)_2](NO_3)_2$ were synthesized by adopting the above procedure but by changing metal-diamine ratio to 1:2.

NiLCl₂ (1a), [NiL₂(NO₃)₂] (5a) and NiL_{2.5}I₂ (3a) were prepared in the solid state pyrolytically at 300, 120 and 185°C respectively from the corresponding parents species.

Results and discussion

Characterization of the complexes

Elemental analyses (Table 1) reveal that nickel(II) iodide and nickel(II) perchlorate form tris-diamine species, whereas, the rest nickel(II) salts yield bisdiamine species with N-phenylethane-1,2-diamine (L) and all attempts to prepare bis-species with iodide and perchlorate and tris-species with other nickel(II) salts from solution failed. IR-spectral study suggests that the diamine is chelated in all the complexes [3, 5, 10].

As a result, the tris-species appear to possess N₆-chromophore around nickel(II) and their electronic and magnetic susceptibility data conform to octa-

 Table 1 Elemental analyses, magnetic and electronic (mull) spectral data of N-phenylethane-1,2-diamine (L) complexes of nickel(II)

, can	Ž	7	Elem	Elemental analyses/%	18/9/v ^a		
Compres	.051	Coloni	C	E	Z	µ _{cff} / BM	µcff/ BM ∧ _{max} / nm
$trans-[NiL_2Cl_2]$	1	blue	47.8(47.8)	(0.9)0.9	13.9(13.9)	3.1	1290, 780, 570, 360
$NiLCl_2$	Ia	green	36.0(36.1)	4.5(4.5)	10.4(10.5)	5.1	þ
$trans-[NiL_2Br_2]$	77	blue	39.1(39.1)	4.8(4.9)	11.2(11.4)	3.1	1300, 770, 560, 350
$[NiL_3]I_2$	ಱ	pink	39.9(40.0)	4.9(5.0)	11.6(11.6)	3.2	900, 555, 370
$NiL_{2.5}I_2$	3a	light blue	36.8(36.8)	4.5(4.6)	10.7(10.7)	3.2	þ
trans-[NiL ₂ (NCS) ₂]	4	blue	48.3(48.3)	5.4(5.4)	13.9(13.9)	3.1	1280, 785, 565, 375
$trans-[\mathrm{NiL}_2(\mathrm{H}_2\mathrm{O})_2](\mathrm{NO}_3)_2$	w	blue	39.1(39.1)	5.7(5.7)	17.1(17.1)	3.1	1310, 790, 570, 380
$trans-[NiL_2(NO_3)_2]$	5a	blue	42.1(42.2)	5.2(5.3)	18.4(18.4)	3.2	1290, 765, 560, 385
$[NiL_3](CIO_4)_2$	9	pink	43.3(43.3)	5.6(5.5)	12.5(12.6)	3.1	895, 570, 365
cis -[Ni L_2 SO ₄]	7	blue	45.1(45.0)	5.7(5.6)	13.2(13.1)	3.1	935, 595, 385
cis-[NiL ₂ SeO ₄]	&	blue	40.6(40.5)	5.1(5.1)	11.8(11.8)	3.1	900, 565, 340

*Percentages in parentheses are theoretically calculated values. **No well resolved spectrum

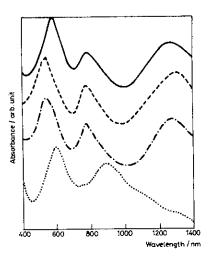


Fig. 1 Electronic spectra (mull) of trans-[NiL₂Cl₂] (1) (—), trans-[NiL₂Br₂] (2) (- - -); trans-[NiL₂(NCS)₂] (4) (—-) and cis-[NiL₂SO₄] (7) (····)

hedral geometry in them. The bis-species, $[NiL_2X_2]$, $(X = Cl^-, Br^-, NCS^-, NO_3^-, 0.5SO_4^{2-}]$ and $0.5SeO_4^{2-}$, $NiL_2(NO_3)_2 \cdot 2H_2O$ and $[NiL_2(NO_3)_2]$ exhibit magnetic susceptibility value of ~3.1 BM and their electronic spectral band positions (Table 1) suggest that they should possess octahedral geometry. But these complexes may have *cis* or *trans* configuration and in order to know this configuration their electronic spectra in NIR-region have been studied. $[NiL_2X_2]$ ($X = Cl^-, Br^-, NCS^-$ and NO_3) possess *trans*-octahedral configuration as they exhibit two d-d bands in NIR region [13, 14] (Fig. 1), whereas, $[NiL_2X_2]$ ($X = 0.5SO_4^{2-}$ and $0.5SeO_4^{2-}$) appear to possess *cis*-configuration as they exhibit one d-d band in NIR-region [13, 14].

In order to attain *cis*-octahedral configuration, SO_4^{2-} and SeO_4^{2-} should act as bidentate chelating ligand. The actual mode of coordination of the nitrate ions in $NiL_2(NO_3)_2 \cdot 2H_2O$ and $NiL_2(NO_3)_2$ has been assigned by IR-spectral study in the region of 1700-1800 cm⁻¹, where the v_1 -symmetric stretching and the double degenerate in-plane bending mode of coordination of nitrate ion in metallic complexes have been assigned [13, 15]. The complex, $[NiL_2(H_2O)_2](NO_3)_2$ (5) shows only one relatively strong band at ~1750 cm⁻¹ which suggests that the nitrate ions are not coordinated with the metal ion and thus indicating the coordination of two water molecules in the complex. On the other hand, $[NiL_2(NO_3)_2]$ (5a) exhibits two peaks at ~1755 and ~1743 cm⁻¹ and the small separation (~12 cm⁻¹) between the two peaks indicates that the nitrate ions are acting as unidentate ligand in the complex. $[NiL_2(NCS)_2]$ (4) shows a single sharp $v_{(C-N)}$ band at ~2096 cm⁻¹ which suggests that the thiocyanate groups are N-bonded [16].

The monodiamine species, $NiLCl_2$ (1a) obtained by pyrolysis of $[NiL_2Cl_2]$ (1) in the solid state possesses unusually high magnetic susceptibility value (5.1

BM at 27°C) considering the above formula. This may be due to the ferromagnetic behaviour which is possibly developed from the Cl⁻ bridging [17–19] and metal-metal interaction. The foregoing facts and the stoichiometry of the compound would require either pentacoordinated or tetracoordinated tetrahedral species [3]. IR and electronic spectra of (mull) of the species are not so well resolved. Therefore it is very difficult to comment on the structure of the complex. Another interesting species is NiL_{2.5}I₂ (3a) which is obtained by pyrolysis of [NiL₃]I₂ (3) in the solid state. Its magnetic susceptibility value (3.2 BM at 27°C) is typical of octahedral nickel(II) and its electronic spectra (Table 1) corroborates this geometry. X-ray single crystal structural analyses of these species are essential to understand the actual structure. But we could not synthesize single crystals of any of the complexes.

Thermal analysis

[NiL₂Cl₂] (1) upon heating undergoes an endothermic phase transition $(142-152^{\circ}\text{C}, \Delta H=1.35 \text{ kJ mol}^{-1})$ (Fig. 2) and gets transformed to [NiL₂Cl₂] (1a) with no visual change in colour. The species (1a) on cooling to ambient temperature does not show any exotherm but on immediate reheating shows endothermic phase transition in the same temperature range with smaller peak area than that in the initial heating (Fig. 2). However, [NiL₂Cl₂] (1a) on exposure to humid atmosphere (60% or above) for several h reverts to (1) as is evident from the ΔH value (Fig. 2). The above facts suggest that the reversibility of the transition is dependent on time. The species (1a) upon further heating decomposes and transforms to nickel(II) chloride through the formation of the intermediates, NiLCl₂ and NiL_{0.5}Cl₂ as is evident from the plateaus in the TG curve (Fig. 3). NiLCl₂ has

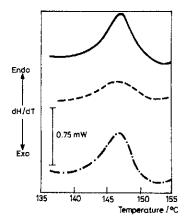


Fig. 2 DSC curves for trans-[NiL₂Cl₂] (1) (wt. taken=8.1 mg); [(—) first heating curve; ΔH = 1.35 kJ mol⁻¹; (- - -) second heating curve (the sample was heated immediately after cooling to ambient temperature; ΔH =0.76 kJ mol⁻¹ and (—), third heating curve (the sample was heated after a time gap 5 h cooling to ambient temperature), ΔH =1.33 kJ mol⁻¹]

Table 2 Initial decomposition temperatures, $T_1(^{\circ}C)$ of Ni(diamine) $_2X_2[3,8-10,20]$

A			,	Y		
mue	CI	Br ⁻		NCS-	$0.55O_4^{2-}$	0.5SeO ₄ ⁷
	279	280	325	q	q	þ
Nmeen	232	248	260	222	285	270
Neten	222	255	250	224	248	258
en	210	270	280	q	250	240
Nipren	192	205	210	þ	230	235
Nphen	200	240	Q	195	270	250

an, ethane-1,2-diamine; Nmeen, N-methylethane-1,2-diamine; Neten, N-ethylethane-1,2-diamine; Npren, N-prophylethane-1,2-diamine; Nipren, N-isoprophylethane-1,2-diamine; Nphen, N-phenylethane-1,2-diamine. ^bdatum is not available

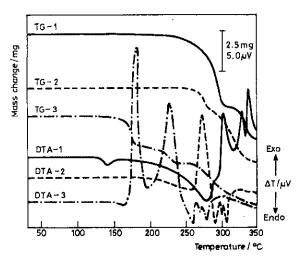


Fig. 3 TG-DTA curves for trans-[NiL₂Cl₂] (1) (—)(wt. taken= 13.30 mg); trans-[NiL₂Br₂] (2) (---)(wt. taken=12.95 mg); and [NiL₃]I₂ (3) (--)(wt. taken=14.70 mg)

been synthesized pyrolytically in pure form in the solid state and characterized. But we could not prepare NiL_{0.5}Cl₂ in pure form [NiL₂Br₂] (2) on the other hand does not exhibit any phase transition and starts to decompose at 260°C. Its decompositions pattern is very much similar to that of (1a). But the plateaus corresponding to NiLBr2 and NiL0.5Br2 are not so well resolved and all attempts to prepare them have failed. [NiL₃]I₂ (3) upon heating undergoes decomposition through the formation of intermediates, NiL₂, I₂ and NiL₂I₂ as is evident from the plateaus in the TG curve. NiL_{2.5}I₂ may be synthesized in pure form in the solid state but synthesis of NiL₂I₂ is not feasible. [NiL₃](ClO₄)₂ (6) as well as [NiL₂(NCS)₂] (4) upon heating do not show any phase transition before decomposition. The former decomposes at ~200°C whereas the latter at ~240°C. But in both cases there are no plateaus in the TG curves for the formation of any intermediate. [NiL₂(H₂O)₂(NO₃)₂ (**5**) upon heating undergoes deaquation-anation reaction without showing any visual colour change and transforms to [NiL₂(NO₃)₂] (5a) at 120°C retaining the geometry as well as chromophore (N₄O₂) around nickel(II). However [NiL₂(NO₃)₂] (5a) reverts to (5) on exposure to humid atmosphere (60% or above). [NiL₂SO₄] (7) and [NiL₂SeO₄] (8), on the other hand undergo decomposition without showing any plateau in the TG-curves.

Conclusions

Table 2 represents the T_i (initial temperature of decomposition) of RNHCH₂CH₂NH₂ (R=methyl/ethyl/n-propyl/isopropyl) and N-phenylethane-1,2-diamine complexes of nickel(II). It is observed that the sequence of T_i with respect to the counter anions for N-phenylethane-1,2-diamine complexes fol-

lows the same trend as observed with RNH-CH₂-CH₂-NH₂ i.e. SO_4^2 -SeO₄²->Br->Cl⁻. It is also to mention that thermal stability of with respect to Ti of N-phenylethane-1,2-diamine is very close to that of N-propylethane-1,2-diamine. Thus, mesomeric and steric effect of phenyl groups have little influence on the thermal stability/thermal properties of N-phenylethane-1,2-diamine complexes of nickel(II).

* * *

We are grateful to Professor A. K. Pal, Department of Material Science, IACS for NIR spectra.

References

- 1 W. W. Wendlandt and J. P. Smith, The thermal properties of transition metal ammine complexes, Elsevier, 1967, p. 148.
- 2 D. R. Bloomquist and R. D. Willett, Coord. Chem. Rev., 47 (1982) 125.
- 3 G. De, P. K. Biswas and N. Ray Chaudhuri, Bull. Chem. Soc. Jpn., 56 (1983) 3145.
- 4 Y. Ihara and R. Tsuchiya, Bull. Chem. Soc. Jpn., 57 (1984) 2829.
- 5 G. De, P. K. Biswas and N. Ray Chaudhuri, J. Chem. Soc., Dalton Trans., (1984) 2591.
- 6 Y. Ihara, Y. Fukuda and K. Sone, Bull. Chem. Soc. Jpn., 59 (1986) 1825.
- 7 Y. Ihara, Y. Fukuda and K. Sone, Inorg. Chem., 26 (1987) 3745.
- 8 S. Roy, A. Ghosh and N. Ray Chaudhuri, Thermochim. Acta, 136 (1988) 191.
- 9 S. Roy, A. Ghosh and N. Ray Chaudhuri, Thermochim. Acta, 155 (1989) 297.
- 10 D. Das, A. Ghosh and N. Ray Chaudhuri, Thermochim. Acta, 2973 (1996) 1.
- 11 C. Pariya, A. Ghosh and N. Ray Chaudhuri, Thermochim. Acta, 268 (1995) 153.
- 12 D. M. L. Goodgame and L. M. Venanzi, J. Chem. Soc., (1963) 616.
- 13 A. B. P. Lever, E. Mantovani and B. S. Ramaswamy, Can. J. Chem., 49 (1971) 1957.
- 14 A. B. P. Lever, Inorganic electronic spectroscopy, 2nd edn., Elsevier, Amsterdam 1984, p. 507.
- 15 N. F. Curtis and Y. M. Curtis, Inorg. Chem., 4 (1965) 804.
- 16 K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Wiley-Interscience, New York, 3rd edn., 1977, p. 270.
- 17 O. Kahn, P. Tola, J. Galy and H. Coudanne, J. Am. Chem. Soc., 100 (1978) 3931.
- 18 S. Foner, R. B. Frankel, H. Wong, W. M. Reiff and G. J. Long, J. Chem. Phys., 68 (1978) 4781
- 19 S. O'Brien, R. M. Gaura, C. P. Landee and R. D. Willett, Solid State Commun., 39 (1981) 1333.